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Abstract. The Object Role Modelling language (ORM2) is a conceptual modelling
language similar to UML and ER, adopted by Visual Studio, the integrated de-
velopment environment from Microsoft. This paper introduces a new linear syntax
and complete set-theoretic semantics for a generalisation of ORM2, which can be
shown correctly embedding the original proposal. A provably correct encoding of
the core fragment of ORM2 (similarly expressive to UML class diagrams) in the
ALCQI description logic is presented. On the basis of these results, a systematic
critique of alternative approaches to the formalisation of ORM2 in (description)
logics published so far is provided. A prototype has been implemented providing a
backend for the automated support of consistency and entailment checks for ORM2
conceptual schemas along with its translation into ALCQI knowledge bases.

1 Introduction

Automated support to enterprise modelling has increasingly become a subject of inter-
est for organisations seeking solutions for storage, distribution and analysis of knowledge
about business processes [1], and the main expectation from automated solutions built
upon these approaches is the ability to automatically determine consistency of a business
model, so that they can be further exploited to build information systems and relational
databases that are coherent with the intended domain business logic. Common approaches
for describing business and the information used by that business are the rule-based ap-
proach [1], and the ontology-based approach [2]. Where the first one consists in identifying
and articulating the rules that define the structure and control the operation of an en-
terprise [3], the second approach seeks to model basic business logic and meta-knowledge
about business domain using ontologies. ORM2 (‘Object Role Modelling 2’) is a graph-
ical fact-oriented approach for modelling, transforming, and querying business domain
information, which allows for a verbalisation in language readily understandable by non-
technical users. ORM2 is at the core of the OGM standard SBVR language (‘Semantics of
Business Vocabulary and Business Rules’), and of the conceptual modelling language for
database design in Microsoft Visual Studio .NET. In particular, the Neumont ORM Ar-
chitect (NORMA) tool is an open source plug-in to Microsoft Visual Studio providing the
most complete support for the ORM2 notation. Previous version of ORM was supported
as the ORM Source Model Solution in Microsoft Visio (Halpin et al. 2003) and, finally,
VisioModeler is also a tool freely available from Microsoft’s MSDN Web site: It allows to
create ORM models under Windows (version earlier than Vista) and map them to a range
of database management systems [4].

The NIAM language (‘Natural-language Information Analysis Method’), ancestor ORM,
has been equipped with an FOL-based semantics for the first time in 1989 [5]. Since then,
despite the remarkable evolution in terms of expressivity and graphical notation that
ORM2 has experienced, much less attention has been paid in the consequent development
of appropriate formal foundations for the modelling language. In particular, the lack of for-
mal foundations for ORM2 had two major consequences: (i) it prevented the identification



of formalisms able to capture the expressivity of ORM2, and the possibility of exploiting
the reasoning services of these formalisms to support the modelling activity itself; and (ii)
it resolved in the last years into a plethora of formally unjustified, and often misleading,
publications dedicated to automatic translation of ORM2 into other formal modelling lan-
guages (most notably the W3C OWL2 language). This paper can be considered as the first
attempt to fill this gap for ORM2, and it is part of the well known tradition in Knowl-
edge Representation and Reasoning whose aim is to provide logic-based foundations, as
well as sound and complete reasoning services, to conceptual modelling languages like,
for example, for (E)ER and UML Class Diagrams (see, among others, [6,7,8,9,10]. The
paper addresses the main problem of providing a logic formalism, equipped with sound
and complete reasoning services, that captures the expressiveness of ORM2. The paper
also provides the identification of a ‘practical’ fragment of ORM2 whose computational
complexity of reasoning is tractable. The first contribution of the paper is thus the in-
troduction of a completely new linear syntax and a set-theoretic semantics for ORM2
matching the usage patterns in the community. The new syntax can be used to express
the full set of ORM2 graphical symbols introduced in [4]. The new semantics has been
proved to be equivalent with the original FOL semantics of NIAM, up to the differences
in the expressivity of the two languages (NIAM expressiveness is properly included in the
one of ORM2, indeed). Now, due to the intrinsic undecidability of FOL, relying on a FOL
theorem prover does not represent in general an effective way to equip a highly expressive
conceptual modelling language with a completely automated reasoning service, not even in
the case of ORM2. Therefore, the second contribution of the paper is driven by a practical
objective. On the basis of well known results developed in the Description Logics (DLs)
community, we identified a ‘core’ fragment of ORM2 that can be translated in a sound
a complete way into the ExpTime-complete logic ALCQI [11], through n-ary relations
reification. The ALCQI logic is actually the most expressive formalism that is supported
by the current state-of-the-art of DL reasoners. On the basis of the results presented in
the paper, a first prototype, built on top of available DL reasoners, has been implemented,
which provides an automated support for schema consistency, entity/relations consistency
check, and entailment verification for user-defined ORM2 statements.

The rest of the paper is organised as follows: Section 2 is about the introduction,
through examples, of the ORM2 graphical notation and intended semantics in the frame-
work of the fact modelling approach; Section 3 introduces the new linear syntax, together
with a complete set-theoretic semantics for a generalisation of ORM2. Several examples
are use there in order to clarify the reasoning tasks that can automatised via the proposed
formal semantics, as well as to show the flexibility of the new linear syntax in providing
the schemas encoding. The first-order logic translation of the introduced set-theoretic se-
mantics is provided in Section 4, while the encoding of the introduced semantics into the
DL logic ALCQI is the main topic of Section 5. There, a ‘practical fragment’ of OWL2 is
explicitly introduced and it is shown that the correctness of the encoding for this fragment
is enough to preserve soundness and completeness of the introduce reasoning tasks. An
extensive critique of alternative approaches to the formalisation of ORM2 in (description)
logics published so far is finally provided in Section 6. Section 7 gives an overview of the
implemented reasoning support prototype, by means of an example of its usage. All the
graphical examples in the paper have been drawn using NORMA.

2 Fact-oriented modelling in ORM2

‘Fact-oriented modelling’ began in the early 1970s as a conceptual modelling approach
that views the world in terms of simple facts about objects and the roles they play [4].
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Fig. 1. Example of an ORM2 schema, together with the fragment of its verbalisation.

The building blocks of this approach are represented by facts (i.e. assertions that are taken
to be true in the domain of interest) about objects playing roles (e.g. ‘Alice is enrolled in
the Computer Science program’, ‘Mary works for the Department of Philosophy’). Basic
ORM2 objects are: entities (e.g. a particular house or a car) and values (e.g. character
string or number). Moreover, entities and values are described in terms of the types they
belong to: A type (e.g. House, Car) is a set of possible instances. Each entity in the domain
of interest is an instance of a particular type. In order to avoid ambiguity among the
possible instances of a given type, entities are identified also by means of a particular
reference mode and a value. A reference mode (e.g. countryCode, securityNumber) specifies
the way in which a value refers to an entity (e.g. ’The person with security number ’285’
is born in ’US’). The full specification of an entity type, together with a reference mode
and associated values gives rise to a reference schema (e.g. Entity Type: Person, Reference
Mode: surname, Value: ‘Stone’). ORM2 also admits the possibility of treating relationships
among objects as object itself. Once a relation has been transformed into an object type,
this last is said to be the objectification of the relation. The roles played by the entities in
a given domain are introduced by means of logical predicates; each predicate (or relation)
has a given set of roles according to its arity. Each role is connected to exactly one object
type, indicating that the role is played only by the possible instances of that type (notice
that, unlike ER, ORM2 makes no use of ‘attributes’ in its base models). Given an n-ary
predicate R, the predicate is decomposed into R.a1, . . . , R.an roles, and each role is linked
to a types O1, . . . , On. Now, turning into the ORM2 graphical notation, let us consider the
example in Fig. 1. The schema includes:

1. Four entity types Enrollment, Student, Date, and Enrol-On-Date;
2. three binary predicates isBy, wasOn, and recordedIn;
3. a user-defined role name [enroller], for the role played by Student
4. a reference mode for each entity, .Id, .Nr, and .Mdy.

As for the reference modes, the semantics can be explained by fully expanding their
representation. In the case of the Student entity type in Fig. 2, a new relation has and a
value type StudentNr have been inserted. Then, a mandatory participation constraint
(‘Each Student has at least one StudentNr’), and an internal uniquess constraint (‘Each
Student has at most one StudentNr’) agree on the same role. Together with the uniqueness
constraint on the other role of has, the diagram forces an injection between Student and
StudentNr instances, that is, ‘For each Student there exists exactly one StudentNr’ and ‘Each
StudentNr is associated to exactly one Student’ (i.e. the relation is both functional and
inverse functional).

Fig. 2. ORM2 reference schema explained. Mandatory, graphically represented by a dot, and
uniqueness constraints, represented by a continuos bar above the roles, are introduced.
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Fig. 3. A conceptual schema including an instantiation of most of the ORM2 constraints.

According to the ORM2 design procedure, after the specification of the relevant object
types (i.e. entity and value types), predicates, static constraints must be considered - the
rest of this section is devoted to an informal introduction of their graphical representation
and intended semantics. Let us consider the example in Fig. 3 that, in addiction to the
elements introduced in 1 and 2, includes:

1. Subtyping links (depicted as thick arrows) indicating ‘isa’ relationships among types,
and a constraint combination, called partition, made of an exclusive constraint (a
circled ‘X’ for ‘Research&TeachingStaff, Admin, Student’ are mutually disjoint), and a
total constraint (a circled dot for ‘Research&TeachingStaff, Admin, Student completely
cover their common super-type’).

2. Internal frequency occurrence constraint indicating that if an instance of Re-

search&TeachingStaff plays the role of being lecturer in the relation isGivenBy, it plays
the role at most 4 times. A frequency occurrence may span over more than one role,
and frequency ranges can be specified.

3. An external frequency occurrence that applies to roles played by Student and
Course, meaning that ‘Students are allowed to enrol in the same course at most twice’.

4. An external uniqueness constraint between the role played by Course in isIn and the
role played by Date in wasOn, saying that ‘For each combination of Course and Date, at
most one Enrollment isIn that Course and wasOn that Date’.

Notice that uniqueness and frequency occurrence constraints may be specialised as ‘inter-
nal’ or ‘external’ constraints. External are those constraints that apply to roles from differ-
ent predicates, and their semantics requires the specification of join path [4]. Join paths are
used specify how the involved predicates should be concatenated, e.g. the type Enrollment

in the example is used to navigate from the predicate isIn to the predicate isBy. Therefore,
since the result of performing a join over the type Enrollment is a ternary table, the exter-
nal frequency constraint forbids this table from having more than 2 triples with identical
combinations of Student and Course (e.g. if {(Stone,AI,enr123),(Stone,AI,enr234)} are in
the table, the update add(Stone,AI,enr345) is forbidden)1.

5. A disjunctive mandatory ‘circled dot’, called inclusive-or, linking the roles played by
AreaManager indicating that ‘Each area manager either works in or heads (or both)’.

6. An object cardinality constraint forcing the number of the Admin instances to be
less or equal to 100. Role cardinality constraints, applied to role instances, are also
part of ORM2.

1 The actual release of NORMA does not allow the specification of arbitrary join paths. Nonethe-
less, according to the ORM Foundation, this feature is currently under development.
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7. An object type value constraint indicating which values are allowed in Credit. Role
value constraints can be also expressed to indicate which values are allowed to the
instances playing a given role.

8. An exclusion constraint (depicted as circled ‘X’) between the roles played by Student

in the relations worksFor and collaborates, expressing the fact that no student can play
both these roles. Exclusion constraint can also span over arbitrary sequences of roles.
The combination of exclusion and inclusive-or constraints gives rise to exclusive-or
constraints meaning that each instance in the attached entity type plays exactly one
of the attached roles. Exclusion constraints, together with subset and equality, are
called set-comparison constraints.

9. A ring constraint expressing that the relation reportsTo is asymmetric.

3 ORM2 from a formal perspective

The modelling activity in ORM2 is supported by several tools that provide user friendly
graphical interfaces to build complex conceptual schema in real world application domains.
The tools perform syntactic check on the graphical notation, warning for not-admitted
combinations of basic elements and constraints, and driving the modelling activity co-
herently with the ORM2 conceptual schema design procedure [4]. Nonetheless, the ability
to avoid the definition of syntactically correct schemas that resolve to be semantically
inconsistent is currently left to expertise and skill of the modeller itself, since none of
the available design tools offers automated reasoning support on specific combinations
of constraints provided by the user. It is well known that, due to design mistakes or to
over-constraining, a conceptual schema may be syntactically correct and, nonetheless, (i)
it may not admit any instantiation (i.e. the entire schema cannot be populated without
the violation of some of the constraints), or (ii) it may admit only a partial instantiation
(i.e. some entity or value types/relations, but not all of them, are forced to be empty).
Schema consistency, consistency of an object type, and the fact that some constraints may
be already present in a schema as implicit consequences, are typical properties of a con-
ceptual schema that, once checked, significantly improve the quality of the schema giving
to the modeller precise information to refining the schema by relaxing some constraints, or
removing some entity types and relations. Now, the automated verification of these prop-
erties over a schema strictly depends on the possibility to perform reasoning and make
inferences on it by means of a semantic-based logic representation of the schema itself.

With this goal in mind, this section presents a linear syntax that fully covers the set
of graphical symbols of ORM2. For each construct φ in the syntax, its corresponding set-
theoretic semantics expressed in relational algebra is also introduced in table 3 (where O
denotes an object type). The signature S of the linear ORM2 syntax is made of:

– A set E of entity type symbols;
– a set V of value type symbols;
– a set R of relation symbols;
– a set A of role symbols;
– a set D of domain symbols, and
– a set Λ of pairwise disjoint sets of values;
– for each D ∈ D, an injective extension function Λ(·) : D → Λ associating each domain

symbol D to an extension ΛD;
– a binary relation % ⊆ R × A linking role symbols to relation symbols. We take the

pair R.a as the atomic elements of the syntax, and we call it localised role. Given a
relation symbol R, %R = {R.a|R.a ∈ %} is the set of localised roles with respect to R;
arity(R) = |%R| is the arity of the relation R;
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– for each relation symbol R, a bijection τR : %R → [1..|%R|] mapping each element in %R
to an element in the finite sequence of natural numbers [1..|%R|]. We also define τ =⋃

R∈R τR. The mapping τR guarantees a correspondence between role components and
argument positions in a relation, so that we can freely choose between an ‘attribute-
based’ and a ‘positional-based’ representation.

Now, given the signature S, an ORM2 conceptual schema Σ over S includes a finite
combination of the constructs in table 3. The list of constraints graphically introduced
Section2 can now be re-formulated using the new syntax, where: (1) TYPE is for linking
a role to its object type; (2) FREQ indicates the frequency occurrence applied to a role
sequence; (3) MAND is for mandatory participation; (4) R-SETH is for the family of set-
comparison constraints; (5) O-SETH is for the family of subtyping constraints; (6) O-CARD
and R-CARD indicate object and role cardinality respectively; and (7) OBJ expresses the
objectification of a relation, and associates a name to the resulting objectified type; (8)
RING is for ring constraints; and (9) V-VAL enumerate the values that are in a value type
and role, respectively.

The linear syntax does not only provide a way to fully represent the ORM2 graphical
notation but, in some respect, it represents also a genuine generalisation of it. In particular,
as the FREQ and MAND are concerned, external and internal forms of the constraints
are represented by means of different specialisations of the same constructs; the FREQ
construct can now be applied to arbitrary role sequences no matter about the arity of
relations involved, and the same holds for the R-SETH constructs. Moreover, additional
sequences of role pairs (see ./R, and ./S) are among the arguments of both FREQ and R-
SETH, and used to specify the roles where the joins must be computed. R-SETH constraints
are equipped with a function µ that fixes the mapping between the constrained roles. No
specific construct has been added to represent uniqueness constraints, since they can be
naturally viewed as frequency occurrence constraints with a fixed range of min = 1,max =
1. Moreover, several constraints that appear among the primitive symbols in ORM2, can
now be easily derived by combining (and specialising) the constructs of the linear syntax
as shown in table 3 (note that, in the case of the exclusive-or constraint, since no join
operation is needed, we simply omitted to include this information in the specification
of the R-SETExc. Note that, as in the case of the simple R-SETH constraints, the actual
version of the exclusive-or could be further generalized by the introduction of join paths
specification). In particular, the ‘strict’ version of the subtyping relation, that is assumed
as primitive in [4], is seen here as a derived constraint: Given a non-strict semantics for
the subtyping relation, the strict one can be represented by a combination of partition,
cardinality constraint, and the introduction of a a new fresh object type symbol (‘equality’
can also be expressed using a similar pattern, where the cardinality of the new introduced
symbol is zero).

Table 2 shows how the new introduced syntax can be used to encode conceptual
schemas that have been originally specified in graphical terms. Role names result from
the concatenation of ‘relation name’, ‘dot’, and ‘name of the attached type’. New fresh
suffixes are introduced whenever more than one role in a relation is attached to the same
type (e.g. see reportsTo in the example).

The semantics of a conceptual schema Σ is formally specified through the notion of
interpretation. Let Σ be an ORM2 conceptual schema over a signature S, an interpretation
for Σ is a triple I = 〈∆I , (·)I , idI〉, where

– ∆I is a set, the interpretation domain, properly including each ΛD ∈ Λ;
– (·)I is a total function such that:

(i) For each E ∈ E , EI ⊆ ∆I \
⋃

Dj∈D ΛDj ;

6



Table 1. Derived constraints.

Uniqueness: FREQ({R1.a11, . . . , R
1.a1n, . . . , R

k.ak1, . . . , R
k.akm}, ./R, 〈1, 1〉)

Role value: TYPE(R.a, V ∗) where V ∗ is a new fresh value type symbol

V-VAL(V ∗) ⊆ {vD1 , . . . , vDn }

Equality: R-SETSub(({R1.a11, . . . , R
1.a1n, . . . , R

k.ak1, . . . , R
k.akm}, ./R),

({S1.b11, . . . , S
1.b1v, . . . , S

q.bq1, . . . , S
q.bqw}, ./S), µ)

R-SETSub(({S1.b11, . . . , S
1.b1v, . . . , S

q.bq1, . . . , S
q.bqw}, ./S)

({R1.a11, . . . , R
1.a1n, . . . , R

k.ak1, . . . , R
k.akm}, ./R), µ−)

Exclusive-Or: MAND({R1.a11, . . . , R
1.a1n, . . . , R

k.ak1, . . . , R
k.akm}, O)

R-SETExc(({R1.a11, . . . , R
1.a1n}), ({R2.a21, . . . , R

2.a2n}), µ1)

R-SETExc(({R1.a11, . . . , R
1.a1n}), ({R3.a31, . . . , R

3.a3n}), µ2), · · · ,
R-SETExc(({Rk−1.ak−11, . . . , R

k−1.ak−1n}), ({Rk.ak1, . . . , Rk.akn}), µk)

Partition: O-SETTot({O1, . . . , On}, O)

O-SETEx({O1, . . . , On}, O)

Strict Subtyping: O-SETTot({O1, O
∗}, O)

O-SETEx({O1, O
∗}, O)

O-CARD(O∗) = (1, inf) where O∗ is a new fresh object type symbol

(ii) For each V ∈ V, V I ⊆ ΛDi , for some ΛDi ∈ Λ;
(iii) For each R ∈ R, RI ⊆ {〈o1, . . . , o|%R|〉 | oi ∈ ∆I , for i = 1, . . . , |%R|}.

– idI :
⋃

R∈RR
I → ∆I is a total injective function mapping each tuple in the interpre-

tation of a symbol R in R, with |%R| ≥ 2, with a unique identifier. Given a tuple t, we
call idI(t) the ‘objectification’ of t.

Intuitively, the main components of an interpretation are the interpretation domain and
the interpretation function. The interpretation function associates to each entity type
E a subset EI , to each value type V a subset of values V I that are in the extension
ΛDi for some Di, and to each relation R of arity n a subset RI of tuples of length n.
An interpretation I of a schema Σ is called a legal database state if it satisfies the
conditions in table 3. The notion of legal database state I can now be used to formally
characterised the reasoning tasks introduced above:

– Strong consistency. A conceptual schema Σ is consistent if there exist a legal
database state I such that OI 6= ∅ for every O ∈ E ∪ V.

– Object type (relation) consistency. An object type O ∈ E∪V (R ∈ R) is consistent
w.r.t. a schema Σ if there exist a legal database state for Σ s.t. OI 6= ∅ (RI 6= ∅).

– Constraint entailment. A constraint φ is entailed by a conceptual schema Σ if and
only if each interpretation I that is legal database state for Σ is also a legal database
state for φ, denoted by Σ � φ.

As for the mutual reducibility of the above reasoning tasks, it is known that concept
consistency and logical entailment generalise concept satisfiability and concept subsump-
tion [12]. Note also that as far as ORM2 is concerned, the Partial schema consistency
service (where, ‘A conceptual schema Σ is partially consistent if there exist a legal database
state I such that OI 6= ∅ for some O ∈ E ∪ V’) becomes a non-sense. By means of the
object cardinality constraint, it is always possibile to draw a conceptual schema that has
no model, and such that there exists at least one non-empty object (e.g., think about two
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disjoint object types that are declared to be subtypes of a common object type whose
cardinality is stated to be greater than 1).

The examples below show how the introduced semantics can be used to automatise
consistency check and constraint entailment tasks, respectively.

Example 1. Let us take from 3 the fragment made of: (i) TYPE({reportsTo.sub},Admin),

TYPE({reportsTo.obj},AreaManager), and (ii) MAND({reportsTo.sub},Admin). Then, let us
add to this fragment a new entity type ICT, and a ternary relation supports

with: TYPE(supports.first,ICT), TYPE(supports.second,AreaManager), TYPE(supports.third,Date),
MAND({supports.first},ICT), MAND({supports.second},AreaManager), and

R-SETExc(({reportsTo.sub}, {reportsTo.obj}), ({supports.first}, {supports.second}), {•})

Table 2. Constraints C1-C11 below represent a fragment of 3. On the right side, the way the
graphical notation is captured by the linear syntax, given the signature specified in the first rows.
The symbol {•} has been introduced here to stress that the required information is redundant.

ENTITYTYPES:{Enrollement,Student,...}
VALUETYPES:{Credit,Student-Nr,...}
RELATIONS:{isIn,isBy,worksFor,collaborates,hasStudent-Nr,...}

C1.
TYPE(isBy.enrollment,Enrollment)
TYPE(isBy.student,Student)

C2. MAND({isBy.enrollment},Enrollment)

C3. MAND({worksIn.areaManager,heads.areaManager},AreaManager)

C4.
R-SETExc(({worksFor.student},{•}),({collaborates.student},{•})
{(worksFor.student,collaborates.student)})

C5. FREQ({isGivenBy.course,isGivenBy.student},{•},〈1, 1〉)

C6.
FREQ({isBy.student,isIn.course},
{isBy.enrollment,isIn.enrollment},〈1, 2〉)

C7.
O-SETTot({R&TStaff,Student,Admin},UNI-Personnel)
O-SETEx({R&TStaff,Student,Admin},UNI-Personnel)

C8. RINGAsym(reportsTo.sub, reportsTo.obj)

C9. V-VAL(Credit)={4,6,8,12}

C10. O-CARD(Admin)=(0,100)

C11.

TYPE(hasStudent-Nr.student,Student)
TYPE(hasStudent-Nr.student-Nr,Student-Nr)
FREQ({hasStudent-Nr.student},{•}, 〈1, 1〉)
FREQ({hasStudent-Nr.student-Nr},{•}, 〈1, 1〉)
MAND({hasStudent-Nr.student},Student)
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An interpretation I is a model of the new schema if:

1. ΠreportsTo.subReportsToI ∩Πsupports.firstSupportsI = ∅ [R-SETExc]
2. AdminI ⊆ ΠreportsTo.subReportsToI [TYPE]
3. ICTI ⊆ Πsupports.firstSupportsI [TYPE]

Let us suppose now that the constraint O-SETIsa(ICT,Admin) is added to the schema. In
order to be a model, I must also satisfy the condition:

4. ICTI ⊆ AdminI that, together with 2., implies
5. ICTI ⊆ ΠreportsTo.subReportsToI but then, by 3. and 4.
6. ΠreportsTo.subReportsToI ∩Πsupports.firstSupportsI 6= ∅

which contradicts our assumption 1. Therefore, O-SETIsa(ICT,Admin) causes the entity type
ICT to be inconsistent. But then, the relation supports also becomes inconsistent, and,
due to the mandatory participation, the same happens to AreaManager, to the relation
reportsTo and to the associated Admin. This simple argument proves that the schema is
partially consistent, i.e. it admits a model where everything is empty except Date.

Example 2. Again from the example 3, let us select the schema made of:
O-SETF({R&TStaff,Student,Admin},UNI-Personnel), where F = {Ex,Tot}. Then let us add the
new entity type LazyPeople with: (i) O-SETEx({R&TStaff,LazyPeople},UNI-Personnel) and (ii)
O-SETEx({Admin,LazyPeople},UNI-Personnel). Then, an interpretation I is a legal database
state of the schema if:

1. FI ⊆ UNI-PersonnelI , where F = {Student,Admin,R&TStaff, LazyPeople}
2. UNI-PersonellI ⊆ R&TStaffI ∪ AdminI ∪ StudentI

3. the involved entity types are pairwise disjoint, in particular:
LazyPeopleI ∩ R&TStaffI = ∅, and LazyPeopleI ∩ AdminI = ∅

Now, let us consider the new constraint O-SETIsa({LazyPeople},Student). An interpretation
satisfies it if LazyPeopleI ⊆ StudentI , but this is actually what the conditions 1-3 imply.
Therefore, it turns out that all the interpretations that are models of the schema are also
model of O-SETIsa({LazyPeople},Student), namely, the constraint is entailed by the schema.

4 FOL encoding of ORM2 conceptual schema

The FOL semantics for ORM2 is based on a signature SFOL that perfectly matches the one
of the linear syntax:

(i) E1, E2, . . . , En 1-ary predicates for entity types;
(ii) V1, V2, . . . , Vm 1-ary predicates for value types;
(iii) D1, D2, . . . , Dl 1-ary predicates for domain symbols;
(iv) R1, R2, . . . , Rk n-ary predicates for relations;
(v) a countable set of constants d1, d2, . . . ;
(vi) a set id2, . . . , idnmax of functions, nmax = max{|%R||R ∈ R}.

The FOL encoding of the ORM2 semantics introduced in the previous section is then as
follows:

– Background domain axioms:

∀x.Ei(x)→ ¬(D1(x) ∨ · · · ∨Dl(x)), for 1 ≤ i ≤ n (1)

∀x.Vi(x)→ Dj(x), for 1 ≤ i ≤ m (2)

∀x.Di(x)↔ (x = d1 ∨ x = d2 ∨ . . . ), for all di ∈ ΛDi (3)

∀x1, . . . , xn, z1, . . . , zn.id(x) = id(z)↔ x = s, for n = 1, . . . , nmax (4)
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The above set of background axioms is needed in order to force the interpretation of the
symbols in the FOL knowledge bases (KBs) to be correct w.r.t. the intended semantics
of the corresponding ORM2 symbols. In particular, axiom (1) forces the interpretation of
each entity type to be disjoint from the interpretation of the domain symbols; axiom (2)
says that objects in the interpretation of a value type must be also in the interpretation of
a specific domain symbol; axiom (3) forces the interpretation of a domain symbols to be
among the set of values predefined by Λ(·), while axiom (4) captures the injective nature
of each id function and the fact that tuples of different length will never agree on the same
identifier. We also add the axioms a 6= b, for any pair of distinct constants a and b (UNA).
A FO interpretation is a model (or, a ‘legal database state’) for an ORM2plus schema if

it satisfies the background axioms and the corresponding FOL KB built as described in
tables 5 and 4. We can prove that, when the schema is restricted to a NIAM schema, the
models of the corresponding ORM2plus schema are the same as the FO models of the NIAM
schema as specified in [5].

Table 4. Linear Syntax (�) and FOL Semantics (�)

� O-SETH ⊆ ℘(E ∪ V)× E ∪ V where H = {Isa,Tot,Ex}
� • If O-SETIsa({O1, . . . , On}, O) ∈ Σ then ∀y.Oi(y)→ O(y) for all i = 1, . . . , n

• If O-SETTot({O1, . . . , On}, O) ∈ Σ then{
∀y.Oi(y)→ O(y)

∀y.O(y)→ O1(y) ∨ · · · ∨On(y), for all i = 1, . . . , n

• If O-SETEx({O1, . . . , On}, O) ∈ Σ then

∀y.O1(y)→ O(y) ∧ ¬O2(y) ∧ · · · ∧ ¬On(y)

∀y.O2(y)→ O(y) ∧ ¬O3(y) ∧ · · · ∧ ¬On−1(y)

· · ·
∀y.On−1(y)→ O(y) ∧ ¬O1(y)

∀y.On(y)→ O(y)

� O-CARD ⊆ (E ∪ V)× (N× (N ∪ {∞}))
� If O-CARD(O) = (min,max)) ∈ Σ then ∃≥miny.O(y) ∧ ∃≤maxy.O(y)

� R-CARD ⊆ ℘(%)× (N× (N ∪ {∞}))
� If R-CARD(R.a) = (min,max)) ∈ Σ then

∃≥minxτ(R.a).R(x1 . . . xτ(R.a) . . . xn) ∧ ∃≤maxxτ(R.a).R(x1 . . . xτ(R.a) . . . xn)

� OBJ ⊆ R× (E ∪ V)

� If OBJ(R,O) ∈ Σ then ∀x.O(x)↔ ∃y.R(y) ∧ id|%R|(y) = x

� RINGJ ⊆ ℘(%× %) where J = {Irr,Asym,Trans, Intr,Antisym,Acyclic,Sym,Ref}
� E.g. If RINGIrr(R.a,R.b) ∈ Σ then ∀xτ(R.a), xτ(R.b).R(xτ(R.a), xτ(R.b))→ ¬R(xτ(R.b), xτ(R.a))

� V-VAL : V → ℘(ΛD) for some ΛD ∈ Λ (where Λ(·) associates an extension to each domain symbol)
� If V-VAL(V ) = {d1, . . . , dn} ∈ Σ then ∀x.V (x)→ (x = d1) ∨ · · · ∨ (x = dn)

Let ΣFOL be the FOL knowledge base over the signature SFOL resulting from the en-
coding above. Now, it is easy to see that an interpretation satisfies an ORM2 schema if
and only if it satisfies the corresponding FOL knowledge base ΣFOL. Therefore, we have
that the following holds:

11



Theorem 1. Let Σ be an ORM2 conceptual schema and ΣFOL the FOL knowledge base
constructed according to the mapping above. Then every (interpretation that is a) legal
database state of Σ is a model of ΣFOL, and viceversa.

In order to make this explicit, it is useful to split the proof in two parts: first, show
that the FOL background axioms exactly represent the conditions for an interpretation I
of a conceptual schema as introduced in Section 3, then consider separately each ORM2
construct with its corresponding FOL assertion. Notice that the ORM2 conceptual schema
Σ and the corresponding FOL knowledge base ΣFOL agree over the same signature.
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5 Encoding in ALCQI

With the main aim of relying on available reasoning tools to reason in an effective way
on ORM2 schemas, we present here the encoding in the logic ALCQI for which tableaux-
based reasoning algorithms with a tractable computational complexity have been devel-
oped [11]. ALCQI corresponds to the basic DL ALC equipped with qualified cardinality
restrictions and inverse roles, and it can also be viewed as a fragment of OWL2. The
difficulty implied by the absence of n-ary relations has been overcome by means of reifi-
cation: For each relation R with arity n ≥ 2, a new atomic concept AR and n functional
roles τ(R.a1), . . . , τ(R.an) one for each component of R. Due to the tree-model property of
ALCQI, the reification process provides a sound and complete translation w.r.t. concept
satisfiability, such that each instance of the new introduced concept is a representative of
one and only one tuple of R. Given as such, the tree-model property is enough to preserve
the correctness of the ALCQI encoding, as well as of the introduced reasoning services
over ORM2. Besides reification, we also know that the expressiveness of ALCQI does
not allow to fully capture the semantics of the ORM2 constraints in table 3. In particu-
lar, ALCQI does not admit neither arbitrary set-comparison assertions on relations (only
comparison between entire role sequences, and between pairs of single roles, are allowed),
nor external uniqueness or uniqueness involving more than one role (only unary keys for
relations are allowed), nor arbitrary frequency occurrence constraints (only qualified num-
ber restrictions are allowed). The analysis of these restrictions thus led to identification of
a fragment of ORM2, called ORM2zero, that is maximal with respect to the expressiveness
of ALCQI, and still expressive enough to capture the most frequent usage patterns of the
modelling community.

Table 6. ALCQI encoding.

Background domain axioms: Ei v ¬(D1 t · · · tDl) for i ∈ {1, . . . , n}
Vi v Dj for i ∈ {1, . . . ,m}, and some j with 1 ≤ j ≤ l
Di v ulj=i+1¬Dj for i ∈ {1, . . . , l}
> v A>1 t · · · tA>nmax
> v (≤ 1i.>) for i ∈ {1, . . . , nmax}
∀i.⊥ v ∀i+ 1.⊥ for i ∈ {1, . . . , nmax}
A>n ≡ ∃1.A>1 u · · · u ∃n.A>1 u ∀n+ 1.⊥ for n ∈ {2, . . . , nmax}
AR v A>n for each atomic relation R of arity n
A v A>1 for each atomic concept A

TYPE(R.a,O) ∃τ(R.a)−.AR v O
FREQ−(R.a, 〈min,max〉) ∃τ(R.a)−.AR v ≥ min τ(R.a)−.AR u ≤ max τ(R.a)−.AR

MAND({R1.a1, . . . , R
1.an, O v ∃τ(R1.a1)−.AR1 t · · · t ∃τ(R1.an)−.AR1 t · · · t

. . . , Rk.a1, . . . , R
k.am}, O) ∃τ(Rk.a1)−.ARk t · · · t ∃τ(Rk.am)−.ARk

(A) R-SET−Sub(A,B) AR v AS (A) A = {R.a1, . . . , R.an}, B = {S.b1, . . . , S.bn}
(A) R-SET−Exc(A,B) AR v A>n u ¬AS
(B) R-SET−Sub(A,B) ∃τ(R.ai)

−.AR v ∃τ(S.bj)
−.AS (B)A = {R.ai}, B = {S.bj}

(B) R-SET−Exc(A,B) ∃τ(R.ai)
−.AR v A>n u ¬∃τ(S.bj).AS

O-SETIsa({O1, . . . , On}, O) O1 t · · · tOn v O
O-SETTot({O1, . . . , On}, O) O v O1 t · · · tOn
O-SETEx({O1, . . . , On}, O) O1 t · · · tOn v O and Oi v unj=i+1¬Oj for each i = 1, . . . , n

OBJ(R,O) O ≡ AR
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Let ORM2zero = {TYPE,FREQ−,MAND,R-SET−,O-SETIsa,O-SETTot,O-SETEx,OBJ} be
the fragment of ORM2 where: (i) FREQ− can be applied to only one role at time, and
(ii) R-SET− applies either to a pair of relations of the same arity or to two single roles.
The encoding of the semantics of ORM2zero shown in table 5 makes use of the following
SALCQI signature:

– A set E1, E2, . . . , En of concepts for entity types;
– a set V1, V2, . . . , Vm of concepts for value types;
– a set AR1 , AR2 , . . . , ARk of concepts for objectified n-ary relations;
– a set D1, D2, . . . , Dl of concepts for domain symbols;
– 1, 2, . . . , nmax + 1 roles, where nmax = max{|%R||R ∈ R}

Given the encoding above, the ALCQI KBs corresponding to the examples 1. and 2.
in Section 3 are as follows (where reified relations are prefixed with ‘R-’, and the concept
A>2 is the top element in the hirarchy of reified binary relations):

Example 1. ∃τ(reportsTo.sub)−.R-reportsTo vAdmin

∃τ(reportsTo.obj)−.R-reportsTo vAreaManager

Admin v∃τ(reportsTo.sub)−.R-reportsTo

∃τ(supports.first)−.R-supports v ICT

∃τ(supports.second)−.R-supports vAreaManager

∃τ(supports.third)−.R-supports vDate

ICT v∃τ(supports.first)−.R-supports

AreaManager v∃τ(supports.second)−.R-supports

∃τ(reportsTo.sub)−.R-reportsTo vA>2 u ¬∃τ(supports.first).R-supports

Example 2. UNI-Personnel vR&TStaff t Admin t Student t LazyPeople

R&TStaff v¬Admin t ¬Student

Admin v¬Student

LazyPeople v¬R&TStaff t ¬Admin

The correctness of the introduced encoding is guaranteed by the following theorem:

Theorem 2. Let Σzero be an ORM2zero conceptual schema and ΣALCQI the ALCQI
knowledge base constructed as described above. Then an object type O is consistent in
Σzero if and only if the corresponding concept O is satisfiable w.r.t. ΣALCQI .

Proof. [→] Given a model I = 〈∆I , (·)I , idI〉 of the expressions in Σzero and such that
OI 6= ∅, we can always build a model J = 〈∆J , (·)J 〉 for ΣALCQI such that OJ 6= ∅ as
follows:

– ∆J = ∆I

– OJ = OI for each O ∈ ΣALCQI
– AJR = {idI(d1, . . . , dn)|(d1, . . . , dn) ∈ RI} for each concept AR corresponding to a

relation R ∈ Σzero, and τ(R.ai)
J = {(idI(d1, . . . , dn), di)|(d1, . . . , dn) ∈ RI} for each

new ALCQI functional role τ(R.ai), representing the i-th component of R

By construction, one can now trivially conclude that OI = OJ 6= ∅. As for the rest of the
expressions in Σzero, it must be verified that for all I that are model of Σzero, there is a J
that is a model of the corresponding ALCQI knowledge base. Let us show hereafter the
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case of the FREQ constraint. The constraint is represented in the linear syntax by means
of the assertion FREQ−(R.a, 〈min,max〉) having the following semantics:

ΠR.a(RI) ⊆ {x|min ≤ ]{σx=R.a(RI)} ≤ max}

The corresponding ALCQI translation, making use of the reification, is as follows:

∃τ(R.a)−.AR v ≥ min τ(R.a)−.AR u ≤ max τ(R.a)−.AR

An interpretation I is a model of the ORM2 assertion above if for all o ∈ ∆I such that
o = t(R.a) for some t ∈ RI , there are n tuples t1, . . . , tn ∈ RI , with min ≤ n ≤ max, such
that o = tk(R.a) for 1 ≤ k ≤ n (i.e. if an object o participates as R.a-th element in RI ,
it must participate at least min and at most max times). Now, an interpretation J , built
from I as above, is such that whenever idI(t) ∈ AJR with (idI(t), o) ∈ τ(R.a)−J , then

there are idI(t1), . . . , idI(tn) ∈ AJR with (idI(ti), o) ∈ τ(R.a)J for 1 ≤ i ≤ n. Hence, J is
a model of the corresponding ALCQI assertion above.

[←] Given that ALCQI has the tree-model property, we know that if a concept C is
satisfiable w.r.t. the ΣALCQI then there exists a tree-like model J such that C 6= ∅. Now,
given a model J = 〈∆J , (·)J 〉 of the expressions in ΣALCQI and such that OJ 6= ∅, we
can build an interpretation I = 〈∆I , (·)I , idI〉 for Σzero such that OI 6= ∅ as follows:

– ∆I =
⋃

O∈{E∪V}O
J , where E ∪ V are the entity and value types in Σzero

– OI = OJ for all O ∈ Σzero

– RI = {(d1, . . . , dn)|∃d ∈ AJR ,
∧n

i=1(d, di) ∈ τ(R.ai)
−J } for each concept AR corre-

sponding to a relation R in Σzero and n ≥ 2
– idI =

⋃
R∈RA

J
R

Observe that, since J is a tree-like model, the fact that there is only one object
in an objectified relation AR representing a given tuple in R is guaranteed. As in the
previous case, in the following we detail the proof for the restricted version of the frequency
occurrence constraint. Given a model J for the ALCQI assertion above, each object
o ∈ ∆J that is related via the functional role τ(R.a)−J to an object o′ ∈ AJR , is actually

related to n objects o′1, . . . , o
′
n ∈ AJR , with min ≤ n ≤ max, i.e. (o′i, o) ∈ τ(R.a)−J , for

1 ≤ i ≤ n. Now, the interpretation I built from J as above, populates the relation RI

with n tuples t1, . . . , tn corresponding to the objects in AR, and such that o = ti(R.a) for
each 1 ≤ i ≤ n. According to the fact that J is a tree-like model, it is always possible to
exclude the case where there is more than one tuple in RI for each object in AJR . Hence, I
satisfies the ORM2 assertion above. Let us finally observe that if we consider a knowledge
base containing only the background axioms (corresponding to an empty ORM2 schema),
a model J of it is such that the interpretation of each entity type is disjoint from the
interpretation of each domain symbol, and each value type is instantiated with a subset of
the objects in the interpretation of a domain symbol. Therefore, an interpretation I built
from I as shown above, populates each entity type with objects from the domain that are
not in the extension of any domain symbol, and populates each value type with objects
that are in the extension of some domain symbol, thus enforcing the conditions introduced
for an ORM2 interpretation in Section ref:ORM2.

5.1 Encoding in DLR

We report in this section the encoding of the ORM2zero fragment in the description logic
DLR [13,14]. The distinctive feature of DLR consists in the possibility of representing

16



n-ary relations, and the intention of capturing conceptual, as well as object-oriented data
models has been the main reason for its development. Notice that verifying DLR knowl-
edge base satisfiability and logical implication can be done in the ExpTime computational
complexity class.

Given the SDLR signature made of:

(i) E1, E2, . . . , En concepts for entity types;
(ii) V1, V2, . . . , Vm concepts for value types;
(iii) D1, D2, . . . , Dl concepts for domain symbols;
(iv) R1, R2, . . . , Rk n-ary (n ≥ 2) roles for relations;

The DLR translation of the FOL background axioms is straightforward:

– Background domain axioms:

E v¬(D1 t · · · tDl) (5)

V vDi, for some Di (6)

D1 v¬D2 (7)

· · ·
Dn−1 v¬Dn

In what follows, we introduce the DLR axioms corresponding to the ORM2zero con-
straints.

– TYPE(R.a,O)
∃[$τ(R.a)]R v O

– FREQ−(R.a, 〈min,max〉)

∃[$τ(R.a)]R v ≥ min[$τ(R.a)]R u ≤ max[$τ(R.a)]R

– MAND({R1.a11, . . . , R
1.a1n, . . . , R

k.ak1 , . . . , R
k.akm}, O)

O v ∃[$τ(R1.a11)]R1 t · · · t ∃[$τ(R1.a1n)]R1 t · · · t
∃[$τ(Rk.ak1)]Rk t · · · t ∃[$τ(Rk.akm)]Rk

– R-SET−H (A,B)

– (i) If A = {R.a1, . . . , R.an}, B = {S.b1, . . . , S.bn}, and n = |%R| = |%S |:

R-SET−Sub(A,B) R v S
R-SET−Exc(A,B) R v ¬S

– (ii) If A = {R.ai}, B = {S.bj}:

R-SET−Sub(A,B) ∃[$τ(R.ai)]R v ∃[$τ(S.bj)]S

R-SET−Exc(A,B) ∃[$τ(R.ai)]R v ¬∃[$τ(S.bj)]S

– O-SETIsa(O1, . . . , On, O)
O1 t · · · tOn v O

– O-SETTot(O1, . . . , On, O)
O v O1 t · · · tOn
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– O-SETEx(O1, . . . , On, O)

O1 t · · · tOn vO
O1 v¬O2

· · ·
On−1 v¬On

The following theorem shows the correctness of the encoding:

Theorem 3. Let Σzero be conceptual model in the signature Szero and ΣDLR the DLR
knowledge base constructed according to the mapping above. Then every model of Σzero is
a model of ΣDLR, and viceversa.

Let us finally note that, given the DLR axioms above, an equivalentALCQI knowledge
base α(ΣDLR) can be defined by applying α to all the assertions in ΣDLR [12](where i is
a role symbol):

α(>n) = A>n α(>1) = A>1

α(P ) = AP α(A) = A

α(¬R) = A>n u ¬α(R) α(¬C) = A>1
u ¬α(C)

α(R1 uR2) = α(R1) u α(R2) α(C1 u C2) = α(C1) u α(C2)

α(i/n : C) = A>n u ∀i.α(C)

α(∃[i]R) = ∃i−.α(R)

α(≤ k[i]R) = (≤ ki−.α(R))

α(L1 v L2) = α(L1) v α(L2)

6 Related works

6.1 The Halpin’s FOL formalisation

In the 1989, an FOL formalisation of the semantics of the NIAM language has been proposed
by T. Halpin in its A Logical Analysis of information Systems: static aspects of the data-
oriented perspective. The main aim of the thesis was to provide designers with ‘a formal
basis for reasoning about conceptual schema and making design choices’ [5,15]. After
several revisions and expansions, in 1990 NIAM became the basis of the ORM language.
Up to now, the Halpin’s thesis can be considered, modulo the differences between NIAM and
ORM2, as the only available attempt to provide a FOL-based semantics to ORM2. Given
an FOL translation of the fragment of our semantics conditions corresponding to NIAM, we
have been able to formally compare the two semantics, and to conclude for their complete
equivalence. This result confirms that the our ‘logic-independent’ semantics actually has
a perfect match with the one intended for ORM.

In what follows, we mainly go through the content of Section 4. of [5] (‘Specifying
NIAM conceptual schemas in KL’), and compares the Halpin’s formalisation with the one
presented in the paper. The language ’KL’ is a tailored version of the first-order language
with identity, containing a definite set of predicates and function constants with fixed
interpretation that simulate a partition of the domain into five classes: Strings, Numbers,
Described objects, Pairs, and the special symbol ‘nil’.
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Uniqueness. Statements TUC3 and TUC5 are introduced in order to express the simple
case of an inter-predicate UCs spanning over n − 1 roles of an n-ary relation R, and the
UCs spanning over a single role of n binary relations, respectively.

∀x1, . . . , xi, . . . , xn, y.(R(x1, . . . , xi, . . . , xn)∧
R(x1, . . . , y, xi+1, . . . , xn)→ xi = y) (TUC3)

∀x1, x2, y1, . . . , yn.(R1(x1, y1) ∧ · · · ∧Rn(x1, yn)∧
R1(x2, y1) ∧ · · · ∧Rn(x2, yn))→ x1 = x2) (TUC5)

According to [4, p.272], we treated uniqueness constraints (UCs) as a special case of
frequency occurrence constraints. Our FREQ construct provides a genuine generalisation
of the Halpin’s expressions. In particular, the possibility of using the FREQ construct to
express UCs spanning over an arbitrary number of roles and relations, no matter about
the arities of the involved relations, is not covered by the Halpin’s formalisation.

Mandatory. ‘A role is mandatory if, in every interpretation of the conceptual schema,
it must be played by all the instances of its object type that are mentioned in the inter-
pretation’ [5]. TMR2 covers the simple case where the mandatory role may occur at any
position of an n-ary relation, while TMR4 is meant to express mandatory constraints over
a disjunction of roles coming from different relations.

∀xi[A(xi)→∃x1, . . . , xi−1, xi+1, . . . , xn.R(x1, . . . , xn)] (TMR2)

∀x[A(x)→∃x1, . . . , xm−1(R1(x1, . . . , xi1−1, x, xi1+1, . . . , xm1
)

∨ · · · ∨
Rn(x1, . . . , xin−1, x, xin+1, . . . , xmn

))] (TMR4)

where m = max of m1, . . . ,mn

No relevant difference between our encoding and TMR4 can be observed: Both formaliza-
tions allow the possibility to select roles from relations with (possibly) different arities.

Frequency. ‘A frequency constraint (FC) of n on a role or role sequence means any given
instantiation of the role (sequence) occurs n times (in that relation). [...] A FC of n;m on
a role (sequence) means that each instantiation of the role (sequence) occurs at least n
and at most m times’ [5]. The most general case of a frequency constraint is represented
by the expression TFC5: The involved relation has arbitrary arity u, and the constraint
spans over r roles.

∀x.[R(x)→ ∃n;mz.(R(z) ∧ zi1 = xi1 ∧ · · · ∧ zir = xir )] (TFC5)

The most notable difference between TFC5 and our FREQ construct is that the latter
is general enough to express frequency constraints spanning over an arbitrary number of
roles coming from a selection of n relations with (possibly) different arities, while TFC5
takes into account only one relation.

Sub-typing. Sub-typing constraints basically corresponds to is-a relation among object
types: Given two object types, A and B, we say that A is a subtype of B if, for each
interpretation, the population of A instances is properly included in the population of B
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instances, formalised in KL as: ∀x(B(x) → A(x)). In [5] this was the only kind of sub-
typing considered, the one we called O-SETIsa. According to the extensions provided in [4],
we also introduced ‘mutually exclusive’ (O-SETEx), and ‘total’ (O-SETTot) sub-typing, and
we combined them in order to express the case of mutually disjoint subtypes that totally
cover their super-type (‘partition’ sub-typing).

Set comparison. This kind of constraints must be intended to hold between roles se-
quence from different relations. TSC4, TEC4, TXC4 (and TXC6) are the most general
expressions in [5] for subset, equality, and exclusion constraints, respectively. TXC6 cov-
ers the case where more than two relations are involved, with only one selected role per
relation.

∀x1, . . . , xn.[∃y.(R(y) ∧ x1 = yi1 ∧ · · · ∧ xn = yin)→
∃z.(S(z) ∧ x1 = zj1 ∧ · · · ∧ xn = zjn))] (TSC4)

∀x1, . . . , xn.[∃y.(R(y) ∧ x1 = yi1 ∧ · · · ∧ xn = yin) ≡
∃z.(S(z) ∧ x1 = zj1 ∧ · · · ∧ xn = zjn))] (TEC4)

∀x1, . . . , xn.¬[∃y.(R(y) ∧ x1 = yi1 ∧ · · · ∧ xn = yin)∧
∃z.(S(z) ∧ x1 = zj1 ∧ · · · ∧ xn = zjn))] (TXC4)

∀x.¬(x ∈ R1.i1 ∧R2.i2 ∨ x ∈ R1.i1 ∧R3.i3 ∨ · · · ∨
x ∈ Rn−1.in−1 ∧Rn.in) (TXC62)

Notice that: (i) the family of our R-SET constructs admits the possibility of comparing
arbitrary role sequences, where roles are selected from different relations, and (ii) the in-
volved relations may have arbitrary arities. This means that our R-SETExc is a genuine
generalisation of TXC6 (we admit the possibility of selecting more than one role in the
same relation at the same time), and it covers TXC4 as a special case. The flexibility of the
R-SET is guaranteed by the presence of the partial bijection µ in the constraint expression.
Equality constraints can obviously be expressed using R-SETSub in both directions. Re-
cent developments of the ORM language (see [4]), have imposed stricter conditions in the
definition of the role sequences that can be compared by means of the set-comparison con-
straints, on one hand, and they have increased the range of application of the constraints,
on the other. Stricter conditions have been imposed in the sense that the selected roles in
the two sequences must have now ‘compatible types’: Roles that are mapped one into the
other in the constraint must be typed by the same object type, or by two distinct object
types having a common (direct or indirect) supertype. More flexibility has been gained by
allowing the possibility of selecting more than a single role per relation, from an arbitrary
number of relations at the same time. A (conceptual) join mechanism to relate together
the different relations involved in the definition of a single role sequence is considered, and
the presence of explicit join paths along these relations is now part of the requirements in
the assertion of a set-comparison constraint (once needed). Finally, join paths are allowed
to be specified only along roles (of distinct relations) that agree on the same (direct) type.
As one would expect, this version of the set-comparison constraints is almost identical to
the one presented in our formalisation, except that we did not impose any restrictions
neither in the definition of the mapping µ (roles in the mapping may be typed by distinct
object types), nor in the definition of the join path (our ‘join anchors’ may be typed by
distinct object types).

2 If R is n-ary, x ∈ R.i =def ∃x1, . . . , xn(R(x1, . . . , xn) ∧ x = xi).
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Nesting. ‘An objectified relationship [is] a relationship that is treated as an object which
itself plays roles’ [5]. The proposed formalisation relies on the Halpin’s ontological insti-
tution of the ‘pairs’ objects: A pair is the result of the application of the special function
pair to two generic objects (see p.3-24). Any ordered n-tuple of arity above 1 (e.g. an
object (x1, . . . , xn) is then captured as the pair (x1, (x2, . . . , xn))). When the result of
objectification is named, the FOL semantics is as follows:

∀x.[A(x) ≡ ∃x1, . . . , xn.(R(x1, . . . , xn) ∧ x = (x1, . . . , xn)] (TN3)

It is easy to prove that TN3 is semantically equivalent to the introduced formalisation.
Nonetheless, more recently, [16] introduces a (different) formalisation of the objectification
where the function pair is absent, and the principle of having a unique identifier for each
reified tuple in the domain of interpretation is definitively lost.

6.2 Mapping ORM2 to the DL DLRifd

In the last few years, several papers addressed the issue of encoding ORM2 conceptual
schema into DL knowledge bases [17,18,19,20]. Among those proposals, [17] can be taken
as the only one going through the encoding with a formal perspective. In particular,
[17] pretends to start from the Halpin’s FOL semantics, and introduces an encoding of
a fragment of ORM2 into the logic DLRifd, an extension of DLR with identification
assertions on concepts, and functional dependencies assertions on relations [21]. Except
for the presence of uniqueness constraints spanning over arbitrary sequence of n roles
of the same relation, and external uniqueness over 2 roles, that are represented in the
paper by means of suitable identification assertions, ORM2zero and the fragment identified
in [17] agree on the same expressive power. In general, the paper suffers from the presence
of several imprecisions, redundancy, and syntactical mistakes that makes the proposed
mapping solutions not always clearly understandable (see, for instance, the introduction
of the identification assertions for the uniqueness constraints representation). Moreover,
some of the proposed solutions look simply incorrect w.r.t. the intended semantics specified
in [5], such as in the case where ‘objectification’ is simply treated as ‘relation reification’
in DL, and where the optionality principle that is crucial in the semantics of frequency
occurrence constraints in [5] simply disappeared in the proposed DLRifd mapping. In
what follows, we go into the details of the proposed mapping (text in boldface represents
the names used in [17] to denote elements and constraints).

Object type. Here the concept of ‘object type’ is introduced, and mapped to a DLRifd

concept. The FOL characterisation, that the author ascribes to the Halpin’s seminal work,
is meaningless: The semantics of the FOL expression, taken as such, establishes that any
element in the domain should be in the interpretation of a concept C, that is obviously
unreasonable.

Named value type (‘not constrained’ case).‘Value types’ (‘such as types of character
strings’ [4]) are mapped by means of a complex axiom, in the same way the presence of
an attribute a of a certain type T for a class C in a UML diagram is captured in [10]: A
new binary relation a is introduced, and the axiom specifies that for each instance c of
the concept C, all object related to c by a, are instances of T . According to this mapping
there is no intrinsic difference between ’object types, and ’value types’. In particular, value
types are simply object types with a binary relation attached linking their instances with
the instances of a so-called ’concrete domain’ T .
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Unary,Binary, and n-ary relations. They are devoted to the introduction, and map-
ping, of the ORM2 relations. Except for the presence of ‘unary’ relations, the formalisation
proposed by Keet is equivalent to one we introduced in the paper. Nonetheless, our ap-
proach assumes the ‘roles’ as first class citizens, and exploits the TYPE constraint to link
each role to the respective concept (in our framework, any role is ‘localised’ by means
of %). Differently from [17], where unary relations are technically mapped using binary
relations whose second component is typed by a ‘auxiliary new introduced filler object- or
value type’, we ruled out them from our encoding into DLR (unary relations are perfectly
covered, on the other hand, by our FOL encoding).

Object type. The proposed FOL formalisation, where elements of the concept C only
appear as playing the first component of the n-ary relation R, is not in line with the DL
mapping (where the instances of the concept C participate in the i-th component of R).
Moreover, given points 3, 4, and 5, the introduction of this kind of axioms is redundant: The
types of the roles are introduced there as relation definitions. The fact that no concept may
appear in isolation in the context of an ORM2 conceptual schema is not captured by the
formalisation at point 6 (quantification over concepts is not expressible in DLR). Finally,
the FOL statement introduced here is meant to represent the ‘mandatory participation’
that is correctly encoded at Point 8 below.

Mandatory and Disjunctive mandatory. There is no relevant difference between our
formalisation and the one proposed by Keet in the case of mandatory constraints. Nonethe-
less, since ‘disjunctive mandatory’ can be considered as a special case of the mandatory
constraint, we introduced only one construct and we admitted the presence of an arbitrary
set of roles.

Uniqueness. The first difference here relates to our choice of treating the uniqueness
constraint as special case of frequency occurrence, as suggested in [4]. Moreover, the plain
version of DLR we used does not allow the possibility of expressing identification assertions
(‘id’). However, even considering the encoding into DLRifd, the proposed formalisation
is asyntactic, on one hand, and incorrect, on the other. In particular, it is known that
‘identification assertions’ (id) do not apply to relation symbols and, moreover, considering
R as the reification of original relation, the components r1, . . . , ri in the id statement should
represent new introduced functional roles, rather than the components of the original
relation. And finally, since uniqueness constraints basically mimic functional dependencies,
in the light of the encoding in DLRifd the use of the so-called ‘functional dependency
assertions’ [21] would have represented a more natural choice here.

Role frequency. The formalisation of uniqueness constraint correctly covers the case
where some of the instances of the involved concept might not play the role at all, but this
does not hold for the role frequency constraint formalisation. According to the semantics
of the two proposed role frequency formalisations, each instance of the involved concept
must play the specified roles a number a of times, with a ≥ 1. Given as such, they do not
agree on the optionality principle discussed in [4].

Proper subtypes, Total covering, Exclusive subtypes. The ‘exhaustive subtype’, as
introduced in [4], does not admit the possibility of having more instances in the union of
the subtypes than the instances in the unique super-type, but the formalisation proposed
in [17] is slightly weaker than this, and does not exclude that this could be the case. On
the other hand, by adopting the equivalence symbol in our formalisation, we ruled out that
possibility. Moreover, we treated the ‘exclusive subtypes, total’ (called ‘partition’ in [4])
as a derived construct.

Subset, Set-equality, Role exclusion. Except from what is probably a typo (the proper
way of representing the objects that participate in a given component i of a relation R
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is by using the quantifier, like in ∃[$i]R), we proposed the same formalisation for subset,
set-equality, and role exclusion ‘over two roles’. Notice that the set-equality is redundant,
once the subset constraint has been introduced.

Joins. We did not introduce any special construct to formalise ‘join’(s), since a join can
be simply expressed using the constructs that are already taken as primitive.

Objectification. The way objectification is introduced in [17] is the one is usually taken
‘reification’ in the DL literature, where a new concept name and a set of functional roles
is introduced according to arity of the original relation. Nonetheless, we decided not to
introduce this kind of formalisation simply because this is not the way objectification is
intended in the present ORM2 literature.

Finally, observe that, in the absence of an Abox logical implication of inclusion asser-
tions (i.e. assertions in the TBox having the form C1 v C2 and R1 v R2 , where C1 and
C2 are concepts, and R1 and R2 are relations of the same arity) can be verified without
considering ‘identification’ and ‘functional dependency’ assertions [21].

As regards to [18], we mostly rely here on the extensive review already made by Keet
in [17]. Starting from this, it should be also noticed that subsequent attempts, focused
on the possibilities of encoding ORM2 into the the web ontology language OWL2 [19,20],
suffer from the same formal inconsistencies and limitations of [18]. In particular, [18] is
misleading with respect to the underlying DL formalism: distinct extensions of the adopted
logic (e.g. DLR plus DLR-Lite), distinct DL languages (e.g. DLR, plus DLR-Lite, plus
SROIQ, plus ‘role composition’ operator) are there arbitrary mixed together. No special
semantics is provided by [18] in correspondence with these combinations, nor theorems
showing the complexity of reasoning with them. Unfortunately, this lack of formality,
together with the introduction of syntactic elements that are simply not allowed in DL
(e.g. ‘ 6v’), makes the proposed formalisation difficult to understand, not applicable in
practice, and logically incoherent. Nonetheless, there are several others critical points
that negatively affect [18]: (i) the introduction of ‘special’ DL concepts with the aim
of encoding data types is improper in the sense that the semantics of these concepts
cannot, by definition, capture the intended one (i.e. the interpretation of a DL concept
is a set of objects, and not of values), and this choice also has an impact on (ii) the way
unary relations are treated in DLR, i.e. by introducing a new auxiliary concept called
‘BOOLEAN’ whose semantics is not formally specified. Again, the intuition is correct but,
the formal translation of it lacks of precision.

In [22], a list of 9 ‘unsatisfiability constraint patterns’ is introduced with the aim
of supporting the automatic detection of unsatisfiable concepts and roles. The patterns
discussed in the paper represent a subset only of all the possible sources of inconsistency
that can occur in a conceptual schema, and the absence of any formal semantics behind
the way the authors deal with them makes the approach non-systematic, incomplete, and
ad hoc. Instead of proposing a logic-based theoretical background for the encoding of an
interesting ORM fragment, as we did, the authors decided to proceed in a non formal way
focusing on what they call ‘the most common unsatisfiability cases in practice’ [22, p.3]:
In particular, there is no reasoning procedure behind the intuitive justification suggested
by the authors for the unsatisfiability of the patterns.

As regards to the patterns themselves, it should be noticed at least one of them, the
one concerning ‘strict subset’ relation, is inconsistent with the interpretation conveyed
in [5] and [4], while the first one, assuming by default in the semantics (and not only
as a best practice in modelling) the mutually exclusiveness of all the entity types in a
schema, it is simply the result of a standalone decision, whose logical consequence in
terms of reasoning are not further discussed in the paper. This said, it should be clear
that the [22] approach to the automatic detection of conceptual schema unsatisfiability is
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in perfect contradiction with our approach. Moreover, our approach not only covers all the
cases presented in [22] but it is also correct with respect to the ORM2zero fragment, and
provides formal justifications for schema unsatisfiability. This is the main reason why we
do not see any ‘complementarity’ between the two approaches, as rather claimed by the
authors in the concluding section of [22].

Similar to [22], a paper focused on the encoding of ORM2 in OWL has been recently
published [23]. The paper introduces a set of informal ‘rules’ devoted to the mapping of a
subset of the ORM2 constructs into OWL. Unfortunately, the paper is misleading in several
respects (for instance: (i) the OWL EquivalentTO, instead of the SubClassOf, is erroneously
introduced several times; (ii) optionality of uniqueness constraints is definitively lost). In
general, the paper covers a fragment that is smaller than ORM2zero, and the proposed
mapping mostly remains formally unjustified.

Finally, in [24] an incomplete encoding of OWL-DL into ORM2 is presented. In the
paper, the authors claim that ‘universal restrictions’ of the form A v ∀R.B cannot be
translated in ORM2 in a way that preserves the semantics of the original constructs. But,
this is not the case: A viable translation into ER has been introduced in [9], where covering
(i.e. total subtyping) and disjointness (i.e. exclusive subtyping) between relationships are
used, and a second one into UML can be found in [10], making use of reification of roles.
Both translations can be straightforwardly rephrased into ORM2.

7 Automated Reasoning Support Tool

With the main goal of providing automated reasoning services facilitating the conceptual
modelling activity, a prototype of ORM2zero modelling support tool has been implemented
for NORMA. The prototype takes an ORM2 schema produced by NORMA as input, and
encodes it into the linear syntax using an XSLT script. By relying on existing OWL2
reasoners (e.g. HermiT, FaCT++), the tool provides the following functionality:

– Implicit constraints deduction. Derived implicit ORM2zero constraints, including
inconsistent object types and fact types, are displayed in distinct pop-up windows.
The computation is complete, but only cognitively relevant constraints are visualised,
e.g. redundant transitive links are not visualised.

– Translation into OWL2 ontology. In order to facilitate web-data exchange and
to make conceptual schemas readily accessible to automated processes, the prototype
features a translator from ORM2zero schema into OWL2 ontology, which can then be
saved in various formats.

Let us now illustrate the essential functionality of the prototype using the example intro-
duced on fig. 4. Its encoding into the linear syntax is as follows:

ENTITYTYPES :{PhoneCall,MobileCall,PhonePoint,Cell, Landline,HomePoint}
VALUETYPES :{PhoneCall Id,PhonePoint ]}

RELATIONS :{HasOriginFrom,HasDestinationTo,HasMOriginFrom,HasPhoneCall Id,

HasPhonePoint ]}
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TYPE(HasOriginFrom.1,PhoneCall) MAND({HasOriginFrom.1},PhoneCall)

FREQ({HasOriginFrom.1}, {}, (1, 1))

TYPE(HasOriginFrom.2,PhonePoint)

TYPE(HasDestinationTo.1,PhoneCall) MAND({HasDestinationTo.1},PhoneCall)

TYPE(HasDestinationTo.2,PhonePoint)

TYPE(HasMOriginFrom.1,MobileCall)

TYPE(HasMOriginFrom.2,Cell)

TYPE(HasPhoneCall Id.1,PhoneCall) MAND({HasPhoneCall Id.1},PhoneCall)

FREQ({HasPhoneCall Id.1}, {}, (1, 1))

TYPE(HasPhoneCall Id.2,PhoneCall Id) FREQ({HasPhoneCall Id.2}, {}, (1, 1))

TYPE(HasPhonePoint ].1,PhonePoint) MAND({HasPhonePoint ].1},PhonePoint)

FREQ({HasPhonePoint ].1}, {}, (1, 1))

TYPE(HasPhonePoint ].2,PhonePoint ]) FREQ({HasPhonePoint ].2}, {}, (1, 1))

O-SETIsa({MobileCall},PhoneCall)

O-SETTot({Landline,Cell},PhonePoint)

O-SETEx({Landline,Cell},PhonePoint)

O-SETEx({HomePoint, Landline},PhonePoint)

R-SETSub({HasMOriginFrom.1,HasMOriginFrom.2}, {}),({HasOriginFrom.1,HasOriginFrom.2}, {}),
{(HasMOriginFrom.1,HasOriginFrom.1),(HasMOriginFrom.2,HasOriginFrom.2)}

Among the key constraints, the schema involves the uniqueness constraint imposed
on the origin of a phone call as well as the hierarchical constraints describing the nature
of possible phone points. Therefore, with a single click we can obtain the following rel-
evant deductions for the given conceptual schema: FREQ({hasMOriginFrom.1}, {}, (1, 1))
and O-SETIsa({HomePoint},Cell), i.e. it is true that any home point is also a cell point,
and each mobile call may have an origin from at most one cell point.

In order to understand why this is true, consider the following. The class of home
points is a sub class of all the phone points, and it is disjoint from the class of landline
points. Since any phone point is either a cell point or a landline point, then any home point
should necessarily be a cell point. The hasMOriginFrom binary relation is included in the
hasOriginFrom binary relation. Since each call participates exactly once as first argument
to the hasOriginFrom, if we take a generic sub class of calls, such as the class of mobile
calls, and a sub relationship of the hasOriginFrom relation, such as hasMOriginFrom, then we
can conclude that necessarily each mobile call participates at most once as first argument
to the hasMOriginFrom relation. The full list of the inferred constraints is displayed in the
ORM2 Inference Browser window while selected deductions are illustrated by relevant
fragments of the inferred schema in pop-up windows over the initial schema.

8 Conclusions

In this paper we introduced a linear syntax and a complete set-theoretic semantics for
the ORM2 conceptual modelling language. A decidable, and computationally tractable,
fragment of ORM2 has been clearly identified and mapped into the DL logic ALCQI. A
first reasoning support prototype for ORM2 has been implemented which enables consis-
tency and entailment checks for the defined fragment of ORM2. Future theoretic works
will be mainly focused on the extension of the ORM2zero towards the identification of a
more expressive, still decidable, ‘object role’ modelling language. The practical objectives
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Fig. 4. Graphical interface of the prototype

of the research will be directed towards full integration of the prototype into third-party
solutions providing graphical user interface for designing ORM2 conceptual schemas (e.g.
NORMA plugin for Microsoft Visual Studio).
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